
‘Vitrigraph’ Stained Glass Window Designer

Mark S. D. Ashdown
University of Cambridge Computer Laboratory,
J J Thomson Avenue, Cambridge CB3 0FD, UK

www.mark.ashdown.name

Abstract

This dissertation was submitted in 1999 in partial fulfilment of the requirements of the University of
Cambridge B.A. Hons Computer Science degree. The aim of the project was to create an application
program that can be used to design stained glass windows. The emphasis was on features that assist the
physical realisation and financial evaluation of the designs. An extension was implemented to create ray-
traced pictures. These allow a design to be evaluated aesthetically, prior to construction. The program has
achieved the aims of the project. It provides a simple interface for the non-technical user, to design a
detailed window with intuitive manipulation of graphical objects. The novel underlying data structure
provides support for algorithms that detect design faults, calculate the production cost based on raw
materials and complexity, and produce pleasing and realistic ray-traced images.

 1

Table of Contents

 1 Introduction ..3

 2 Preparation
 2.1 Background Reading ..5
 2.2 Development Tools ..5
 2.3 Requirements Analysis...6
 2.4 Object Oriented Program Design7
 2.5 Stained Glass Pattern Structure9

 3 Implementation
 3.1 User Interface ...13
 3.2 Vertex Representation ..15
 3.3.1 The SGVertex Class ...15
 3.3.2 Vertex Manipulation ...15
 3.3 Edge Representation...16
 3.3.1 The SGEdge Class..16
 3.3.2 Drawing a Curved Edge...16
 3.3.3 Drawing an Arc Edge..17
 3.3.4 Edge Intersection Detection ..18
 3.3.5 Splitting an Edge..19
 3.3.6 Edge Simplification ..20
 3.3.7 Tangent Vectors...21
 3.4 Facet Representation ..22
 3.4.1 The SGFacet Class ...22
 3.4.2 Facet Detection..22
 3.4.3 Concave Angle Detection...22
 3.5 Glass and Lead Data...23
 3.6 Pattern Evaluation ..24
 3.7 Files..26
 3.8 Printing...27
 3.9 Ray-tracer Translation..28

 4 Evaluation
 4.1 Program Testing ...29
 4.2 User Trials..31
 4.3 Achievement Criteria ...32
 4.4 Future Enhancements ...33

 5 Conclusions ..35

 Bibliography ..37

 Appendices
 A Program Structure ..39
 B Pattern Representation Classes...............................40
 C Example Code ..42
 D Screen Shots ...43
 E Printouts ...45
 F Financial Evaluation Testing..................................48
 G Ray-Tracer Output..49
 H Rendered Pattern ..50
 I Program Documentation ..51

 3

1 Introduction

The production of stained glass windows is a craft that has been practised for centuries. It is now a hobby
for individuals as well as being used by companies producing pieces for houses, bars, commercial buildings
and restoration projects.
 The techniques involved in designing and constructing a stained glass window have been refined over
the years. Many books have been written on the subject, craft classes teach the skills and a wide range of
specialist tools is available. The application of computing to the field, however, has been limited. Two
programs for designing stained glass windows were reviewed while the feasibility of this project was being
assessed. The first �The Glass Eye� makes it easy to produce simple designs, but does not have features for
evaluating designs or aiding physical construction. �American Bevel Designer� is a more complex package,
but is suited to producing drawings, rather than making designs from which stained glass windows can be
constructed. A bitmap drawing program would be unsuitable. A vector drawing program could be used to
create a structured design, but could not store information such as the types of lead and glass, which are
essential for financial evaluation. A CAD package could be used, but would not be suited to the specific
application, would contain many unnecessary features, and would require the combination of additional
programs to allow aesthetic and financial evaluation.
 A stained glass window is comprised of individual pieces of glass, cut from sheets of different
patterns and colours (figure 1.1). A full-size pattern is drawn and placed on a bench. The glass pieces are
cut to the correct shape by placing the glass over the pattern and using a glasscutter to score along the lines.
The glass is then snapped along the scores. Traditionally the cutting tip would have been a diamond, but a
modern cutter will typically use a tungsten carbide wheel. The stained glass piece is assembled on the
bench, with lengths of lead being fixed between the glass pieces to hold them together. The lead is soldered
at the joints. Cement is worked into all the cracks to secure the glass pieces, and when it has dried,
�blacking� is used to darken the lead.
 The aim of this project was to create a program for designing stained glass windows. Unlike other
programs devised for this purpose, the aim of this one was to offer features that assist in the entire process
of stained glass window creation from aesthetic design evaluation, to cutting the glass.

Lead soldered
at the joints

Individual
glass
pieces

Figure 1.1 A stained glass window

 5

2 Preparation

This section describes the background material and development tools used for the project, and states the
criteria formulated to determine successful completion. It then shows the object-oriented design of the
whole program, and an overview of the data structures devised to store a stained glass pattern.

2.1 Background Reading

It was necessary to have a thorough understanding of the issues of importance when creating stained glass
pieces. This was gained by reading books on the topic [5], studying catalogues of tools and materials from
James Hetley Stained Glass Supplies, looking through books of stained glass patterns, and by enlisting the
help of an expert: Mr D. H. J. Ashdown owner of Ashdown Sales Ltd, a Cardiff-based company that has
been producing stained glass windows for over 50 years, was consulted on issues specific to stained glass.
Hetleys was established in 1823 and supplies stained glass tools and materials to amateurs and enthusiasts
all over Britain.
 Before program design began, Software Engineering techniques were considered [7], especially
requirements analysis and object-oriented design.
 The storage and manipulation of the stained glass pattern was a major concern in this project.
Selection of appropriate methods included choosing how represent the lines of lead and how they fit
together in the pattern. Overhauser, Bézier and B-Spline curves were considered as candidates for
representing the lines of lead, and their properties were studied [4]. Important details were examined such
as the ease with which the lines can be manipulated graphically, the degree of continuity between curve
segments, and the way in which the curves can be made to interpolate the defining vertices.
 The �Winged-edge Data Structure� [1] was studied as a basis for representing the whole pattern. This
system was originally designed for representing polyhedral 3-dimensional objects for computer vision,
where each face was a 2-dimensional polygon with an arbitrary number of straight sides. A similar system
was used for this application to represent a 2-dimensional pattern, where each face is a 2-dimensional shape
with an arbitrary number of sides that may be straight or curved. The new structure retains the �winged
edge� property whereby each edge is part of up to two faces.

2.2 Development Tools

Java was chosen as the language in which Vitrigraph was written, because it is flexible enough to encode
the novel features that were necessary, while also providing the cross-platform compatibility and high-level
features important in such an application program. Although Java 1.2 was only available as a beta version
when the project was started, it was used because it introduced powerful new graphics features that were
useful for displaying the stained glass pattern on the screen. In preparation for the coding, prototypes of
important parts of the program were written, such as the routines to display the lines and shapes that form
the graphical representation of the stained glass pattern. Standard Java techniques were reviewed [3], and
information regarding the new capabilities of Java 1.2 was gained from the online documentation at
http://java.sun.com/.
 The system for backing up the project files was put in place at the start. Scripts for copying the files to
the backup server were created so that they could easily be invoked to backup all essential files. The nature
of the project meant that the source code, data and documentation constituted a relatively small amount of
memory � about 2Mb. The files could therefore be stored after each session of work, forming a series of
sets of files holding the stages of development. Each set of files was accompanied by a short explanation of
the work that had been done since the last one was saved.

 6

2.3 Requirements Analysis

The program was designed for a user who has only basic computer skills, but is familiar with the design
and construction of stained glass windows.

The main stages in the production of a purpose-built stained glass window were identified as:

! Initial input by the customer concerning the general form of the piece
! Design
! Aesthetic evaluation
! Financial evaluation
! Approval by the customer (or a return to the design stage)
! Physical construction

The design stage can be achieved using the software. The aesthetic evaluation, financial evaluation and
physical construction can then all be aided by the software using the knowledge it has of the pattern. The
fundamental requirements of the program necessary to facilitate these abilities are listed below.

! The user must be able to create a stained glass pattern using simple
constructs that are combined graphically.

! The graphical representation of the pattern should relate directly to the

intended physical pattern, and incorporate information such as the
type of each piece of lead and glass.

! It must be possible to load and save designs from and to files.

! It must be possible to produce printouts of the whole pattern or parts

of it, from which the stained glass window can be constructed.

! Financial evaluation routines should compute the cost of producing

the window. The routines should give an accurate costing for patterns
of varying size and complexity.

! The program must be able to present the pattern in a form that makes

it easy to visualise the finished product. Aesthetic evaluation must be
possible.

 7

2.4 Object Oriented Design

The nature of the application and the use of Java, made an object oriented design method appropriate for
this project. This approach was used to obtain modularity of program components, and a structure for
representing the stained glass pattern that relates directly to the physical object. Figure 2.1 depicts the
object-oriented structure of the Vitrigraph program, and the interaction between the objects. Each arrow
points from an object, to another object that it accesses.
 The objects are implemented directly using Java classes, and grouped into Java packages. The classes
that are visible outside their respective packages are shown below. During implementation, it was
necessary to include extra classes within the packages as was expected, but these are only used internally
and do not affect the interactions shown.

Shell

MainWindow

SGForger

SGVertex

SGFacet

SGEdge

Editor

Translator Evaluator

InfoWindow

FileAccess Print

Debug

VGGlobal

LeadData GlassData

LeadType GlassType

Figure 2.1
Vitrigraph Object
Oriented Design

SGPattern

‘pattern’
package

 8

A package called vitrigraph contains all of the program code,
which is grouped into sub-packages (figure 2.2). The sub-
packages and their constituent classes are listed in appendix
A.
 The pattern package contains the classes that store and
manipulate the stained glass pattern. Routines to alter the
pattern are only accessible from within this package. Classes
such as Editor make calls to the SGForger class to change a
pattern. The SGPattern class is used to pass the core data of
the pattern between parts of the program, while preventing it
from being altered. The LeadData and GlassData objects
hold sets of LeadType and GlassType objects, which store
the attributes of the different types of lead and glass known to the program. They are loaded from a file
that can be updated to allow new types to be added. Information about glass and lead was obtained from the
catalogues of James Hetley Stained Glass Supplies. The attributes readily available and relevant when
designing a stained glass window have been included in the LeadType and GlassType classes, and are
listed below.

Lead Attributes
! Name
! Face width
! Heart width
! Depth
! Price per metre

Glass Attributes
! Name
! Colour
! Thickness
! Price per square metre

 The tool package contains the classes that manipulate and interpret the stained glass pattern. Editor
receives events such as mouse clicks from the user interface provided by MainWindow. The other classes
in the package � Evaluator and Translator – are passed an SGPattern object that allows them to compute
additional data from the pattern without altering it. An SGPattern object is also passed to the FileAccess
and Print classes, so that the data for a particular pattern can be saved, loaded and printed.
 Vitrigraph is a unique program with a specific purpose. It does not have to load or save files in
multiple file formats. After consulting the book �Encyclopaedia of Graphics File Formats� [6], it was
decided that standard raster image formats were unsuitable for saving patterns, and standard vector formats
could not store the additional information about lead and glass. The AutoCAD DXF format was considered,
but it is a complex format incorporating many elaborate features that would not be used in this application.
Stained glass patterns are therefore saved to disk in a proprietary file format based on Java object
serialisation. This provides a reliable way of storing complex data structures such as those used in
Vitrigraph. The files include file format version numbers, and the implementation of the FileAccess class
allows the file format to be augmented with extra data, while maintaining compatibility with previous
versions. This will enable later versions of the program to add to the original file format while still being
able to load older patterns, and allow older versions of the program to extract data from files of a newer
format. This is achieved using a Java interface within the io package that defines the methods that a pattern
file object must implement, while allowing other capabilities to be added in future versions.
 Two extensions were cited in the project proposal: the use of glass textures and conversion of patterns
to ray-tracer format. The first was considered throughout the design of the program so it could be included
in the future. It was not used because the benefits were not deemed great enough to divert attention away
from other parts of the project. The facility for creating ray-tracer files has been incorporated as a major
part of the program, and is the method by which true aesthetic appraisal of patterns is possible.

vitrigraph

main
gui
pattern
tool
io
debug

Figure 2.2 The vitrigraph package
is split into six sub-packages

 9

2.5 Stained Glass Pattern Structure

A stained glass pattern is defined in two-dimensional �pattern space� where a length of one hundred units
corresponds to 35.25mm in real space. This scale is due to technicalities of the Java graphics
implementation and is transparent to the user. The design of the components that constitute a stained glass
pattern in Vitrigraph, and their interdependencies, are described on the following pages. The pattern is
comprised of three basic constructs:

! Vertices Two-dimensional points representing joins between segments of lead
! Edges Lines between the vertices representing the segments of lead
! Facets Closed loops of edges, representing the glass pieces

 These constructs form an interconnected
structure where facets are defined in terms of
edges, which are defined in terms of vertices. An
edge has links to the facets of which it is a part,
and a vertex has links to the edges it affects. The
scheme was inspired by the �Winged Edge Data
Structure� of Baumgart [1].
 The data and methods necessary to define a
stained glass pattern are held in SGVertex,
SGEdge and SGFacet objects. The data held
within these objects is private. Changes to the
data require calls to the methods of the
associated objects, which ensures that a
component of a pattern can maintain it�s internal
state. An SGPattern object stores vectors of
these three object types, to form the complete
definition of a particular pattern. An SGForger
object adds functionality to this data, allowing
the pattern to be manipulated.
 An SGVertex is the representation of a
point in pattern space. The user manipulates the
pattern by creating, moving and deleting
vertices.
 An SGEdge represents an edge in pattern space defined by the positions of a number of vertices. It
was decided that the line shapes that could most accurately and concisely define the outline of a stained
glass pattern, were: straight lines, circles, circular arcs and curves that interpolate a set of vertices. The
curves require C1 continuity (continuity of the first derivative) because of the technique used to scour and
snap the glass. The type of curves chosen was Bézier curves, because they have the desired attributes, and
avoid the additional and unnecessary complexity of the more general B-splines. A new system was devised
to join Bézier curves together with C1 continuity. This is used to make a series of edges form a curve that
interpolates a set of vertices. The system is described below.
 An SGEdge has one of the four types shown in the table below. Each edge has two primary vertices �
the end points of the edge � and zero or more secondary vertices which affect the shape of the edge
indirectly. The total number of vertices is the number of degrees of freedom of the shape. Figure 2.4
contains examples of the four types of edge.

Edge Type Primary Vertices Secondary Vertices Graphical Representation
Straight 2 0 Straight line
Quadratic 2 1 Quadratic Bézier
Cubic 2 2 Cubic Bézier
Arc 2 1 Circular arc

SGForger

SGVertex SGFacet

SGEdge

SGPattern

Figure 2.3 Stained glass pattern data structure

 10

 The edge types were chosen for the following reasons:

! Each edge has two primary vertices: a start vertex and an end vertex. This is
important when facets are considered.

! Each line has C1 continuity throughout. This is a property of Bézier curves, as well as
straight lines and arcs, and enables the line to be cut in glass.

! An edge can be sub-divided into two smaller edges using a simple rule. This allows a
vertex to split an edge (page 19).

! A 2-dimensional bounding box for each edge can be calculated. The box is used for
edge intersection detection (page 18).

! Routines to draw each line type are provided by the Java2D graphics API in Java 1.2
! A line specified with the method above is invariant under translations, rotations and

uniform scalings of pattern space. These transformations are simply applied to the
primary and secondary vertices of each edge to transform a whole pattern.

 Each SGEdge object contains
a field used as an index by the
LeadData class to retrieve a
LeadType object. The information
from this object can be used to
calculate physical, graphical and
financial properties of the edge.
 The original design used two
separate edge types to represent
circles and arcs, each edge
interpolating three vertices. As
work progressed, however, it
became apparent that the single arc
type shown above was preferable,
and can be used to create circles and
arcs that interpolate three vertices
(figure 2.5).
 It was decided that the user must be able to draw curved lines that interpolate a series of vertices,
because this allows general shapes to be intuitively created and accurately positioned. Bézier curves are
usually manipulated by positioning the end points which are interpolated and the control points which are
not interpolated. A system was devised for deriving the positions of the end points and control points of a
Bézier curve from the vertex positions of an edge. This allows the user to specify a series of vertex
positions which are then interpolated by a series of Bézier curves.
 A curved line interpolating n vertices where n ≥ 3 is constructed using a quadratic edge at each end
and n − 3 cubic edges inbetween. Each edge is a Bézier curve whose end points are the primary vertices of
the edge, and whose control points are calculated from the positions of the primary and secondary vertices.
A curved line is created from a series of edges where neighbouring edges share primary vertices so that

Straight

Cubic Bézier

Quadratic Bézier

Arc

Figure 2.4 Examples of the four types of edge

Three arcs Two arcs

Figure 2.5 Edges are combined to form circles and arcs

 11

they join at the ends. The secondary
vertices of an edge are the other primary
vertices of it�s neighbouring edges. The
system described on page 16 ensures that
the control points for neighbouring Bézier
curves are equidistant from their common
end point and the three points are colinear.
Because it is a property of Bézier curves
that their direction at their end points is
equal to that of the line from the control
point to the end point, C1 continuity
between the segments of the curved line is
enforced. Continuity is maintained when
edges are split in two (page 19) by careful
assignment of the primary and secondary
vertices of the sub-edges.
 A curved line interpolating four
points can be constructed as shown in
figure 2.6 (a). The edges at the ends of the
line are quadratic edges. Figure 2.6 (b)
shows a quadratic edge with primary
vertices v1 and v2, and secondary vertex
v3. Figure 2.6 (c) shows a cubic edge with
primary vertices v2 and v3, and secondary
vertices v1 and v 4.
 An SGFacet represents a glass facet
in the stained glass pattern. It consists of a
series of edges that form a closed loop,
where no edge intersects any other edge in
the pattern. This means that each edge is
part of the perimeter of zero, one or two
facets.
 Each SGFacet object contains a field
used as an index by the GlassData class to
retrieve a GlassType object. The
information from this object can be used to
calculate graphical and financial properties
of the facet.

v1

v2

v3

v1

v2

v3

v4

v1

v2

v3

v4
Control points for Béziers

Figure 2.6 A curved line constructed from
quadratic and cubic edges

(a)

(b)

(c)

Figure 2.7 A facet

 13

3 Implementation

This section on implementation starts by describing the features accessible via the graphical user interface
of the Vitrigraph program. This prompts an explanation of the underlying implementation. The
representation and manipulation of the vertices, edges and facets of a stained glass pattern are covered in
detail, followed by a description of how information about lead and glass is linked to the pattern. Financial
evaluation, saving and loading, and printing of patterns are then described. Finally, the extension to output
patterns as scene description files for ray tracing is presented.

3.1 User Interface

The Vitrigraph user interface
essentially indicates the high level
functions performed by the
program. All actions are initiated
from the main window, which is
represented as a MainWindow
object from the gui package.
Further dialogue windows
subsequently appear displaying
data or asking for information or
confirmation.
 One of six drawing tools is
selected at any time. The current
tool selection determines how use
of the mouse pointer affects the
stained glass pattern displayed in
the window.

The Menu Bar
The options available from the
menu bar of Vitrigraph (figure
3.2) are listed and briefly
described in the table below.

Menu Options Explanation
File New, Open, Save,

SaveAs, Exit
Create a new pattern, load and save pattern files (page 26) and exit
the program.

Edit Cut, Copy, Paste, Delete Editing features enabling parts of a pattern to be deleted or
duplicated.

Tool Translate, Evaluate,
Pointer, Line, Curve,
Circle, Arc

Translate the pattern to ray-tracer format (page 28), evaluate the
pattern financially (page 24). Tools for building a pattern: see next
page.

Zoom zoom factors Cause the pattern to be displayed at different magnification levels.
Grid Off, Display Only, Snap

to Grid, Choose Grid Size
Toggle use of the grid, and change the grid spacing in millimetres.

Figure 3.2 The menu bar

Figure 3.1 The main window of Vitrigraph

 14

The Tool Bar
Figure 3.3 is an image of the toolbar from the main window of Vitrigraph. It is followed by a table that lists
and briefly describes the options available.

Group Option Explanation
Drawing Tools Pointer, Line,

Curve, Circle,
Arc, Fill

Select vertices. Draw lines of various types. Fill Facets.

Choosers Lead Chooser,
Glass Chooser

Choose a type of lead or glass from a list (see page 23). This is then
used by the drawing tools to create edges or fill facets.

Scrolling Centre Scroll the display to the centre of the stained glass pattern.
Display Options ShowVertices,

Show Edges,
Show Facets

Toggle the display of the vertices, true thickness of the lead, and glass
facets.

Control Flow
Figure 3.4 depicts part of the object oriented
design on page 7. It depicts the flow of
control that ultimately causes the
modification of a stained glass pattern. The
Shell creates a MainWindow object that
accepts mouse and keyboard events from the
user. These are mapped to methods of the
Editor, such as those to select a particular
drawing tool, or register a mouse click at a
certain position in the pattern. The Editor
may then invoke methods of an SGForger
object of which it may have many. The
SGForger provides methods such as those to
select the vertices in a particular area of the
pattern, or fill the facet at a particular position
in pattern space. It is essentially a wrapper
that adds functionality to the SGPattern
object, which is a data structure that stores
the pattern.

Shell

MainWindow

SGForger

Editor

SGPattern

GUI Events

Pointer
Line

Curve
Circle

Arc
Fill Lead Chooser Glass Chooser

Show Facets
Show Edges

Show Vertices
Centre

Figure 3.3 The tool bar

Figure 3.4 The flow of
control that allows a
pattern to be edited

 15

3.2 Vertex Representation

3.2.1 The SGVertex Class
The SGVertex class encapsulates the data and methods associated with a vertex. These are listed in
apendix B.

3.2.2 Vertex Manipulation
A vertex is created when the user clicks the mouse in the editing area of the Vitrigraph window. The mouse
position is transformed to a point in pattern space which is passed to the SGVertex constructor. When a
vertex is dragged with the mouse, the relative difference in position is passed to the translate method of the
vertex.
 When the user creates a �rubber band� by
dragging out an area with the mouse (figure 3.5), the
SGForger object that is handling the current pattern
temporarily moves the selected vertices to a separate
vector, to allow them to be manipulated as a unit.
The in method of each vertex is used to determine
whether it is inside or outide the rubber band which
is transformed into pattern space.
 The squareDistanceFrom method is used to
cause vertices to �snap� together. When the user
finishes moving a set of vertices, or creating a new
edge, the method is used to calculate the distance
from a new or moved vertex, to the other vertices in
the pattern. If this is less that a limit defined in the
VGGlobal class, the vertices are merged, with one
vertex replacing the other. In the example on the
right, vertex A replaces vertex B. This is achieved
by calling B·replaceWith(A), which calls the
replaceVertex method of each of B�s primary and
secondary edges, to remove B from the pattern data
structure. A·killRedundantEdges is then called,
causing any duplicate primary and secondary edges
that A now has to be killed. In figure 3.6, one of the
edges from A must be killed. B·kill is then called to
mark B as redundant. It will be removed completely
from the pattern data structure by the SGForger
object. The test to determine if two edges are equal
is performed by the equals method of the SGEdge
class, which uses a different algorithm for each
edge type.
 When the validate method of a vertex is called
it�s primary edges are checked. If they are all
redundant the vertex is killed, because it is floating
in space, not attached to anything (figure 3.7). When
a vertex is killed it calls the validate method of all
of it�s secondary edges.
 When a vertex is moved, it calls the invalidateImage method of it�s primary and secondary edges to
force them to recalculate their graphical representations, which will have been affected.

Figure 3.7 Redundant vertices are deleted

Figure 3.5 �Rubberbanding� to select vertices

Figure 3.6 Vertices �snap� together

A

B

A

This vertex has no
primary edges so it
is killed.

 16

3.3 Edge Representation

3.3.1 The SGEdge Class
The SGEdge class encapsulates the data and methods associated with an edge. These are are listed in
appendix B. An edge has one of four types: straight, quadratic, cubic or arc. A straight edge is simply
drawn as a straight line between it�s two primary vertices, of the appropriate width and colour, which is
scaled and translated to account for the zoom factor and scroll position selected by the user. The methods
devised for drawing edges of the other types are described below.

3.3.2 Drawing a Curved Edge
The shape of a quadratic edge is a quadratic Bézier curve defined by three points, two of which are the end
points (primary vertices) of the edge. The other control point is calculated from the positions of the two end
points and that of the single secondary vertex. A cubic edge is a cubic Bézier curve defined by four control
points, two of which are the end points of the edge. The other two control points are calculated in the same
way as for the quadratic edge, by applying the algorithm to each end of the edge in turn.

If P and Q are the end points of a curve and R is a secondary vertex, the position of the control point for
the Bézier curve is displaced from Q by vector d (figure 3.9). The end point of d is located using the length
d and the sine and cosine of angle α, which are calculated (using a temporary variable θ) as follows.

 Figure 3.9 Calculations involve the two primary
vertices and one secondary vertex

Quadratic Edge Cubic Edge

This control point is calculated from these vertices

Figure 3.8 Derived Bézier control points for quadratic and cubic edges.

ab
cba

abbac
222

222

cos2

cos2
−+

==

−+=

βθ

β

4
2cos1sin

2
cos1

2
sincos

2
sin

2
90coscos

2

22

θαα

ββα

ββα

+
=−=

−
=






=







=






 −°=

















−
=

















×
















xyyx

y

x

y

x

abab
a
a

b
b

0
0

00

cosine rule:

trigonometry:

vector product:

P R

Q

α α
β

a b

c

d
a cos α b cos α

 17

If bxay � byax ≥ 0 then a is anti-clockwise about Q from b, so d is anticlockwise from a. Otherwise d is
clockwise from a. The length of d is given by d = min(a cos α, b cos α) / 3
 The symmtery of the method above ensures that a curve from Q to R with P as a secondary vertex,
will place its control point a distance d from Q, in the opposite direction to d. At the end points the
direction of a Bézier curve is given by the line between the two control points on that side of the curve.
This means that the curves that meet at Q will have C1 continuity as desired.

3.3.3 Drawing an Arc Edge
The arc edge is defined by two primary
vertices and one secondary vertex,
referred to here as P, Q and R
respectively (see figure 3.10). The centre
of the circle is point O, and the radius is r.

By noting:

Rearranging gives:

Reuse of common sub-terms allows the location of the centre of the circle to be calculated using the above
formulas in a total of 27 basic arithmetic operations. The radius is then calculated as:

A value i is calculated:

The sign of i determines the side of the line from P
to Q on which point R falls. This establishes
whether the arc is drawn clockwise or anti-
clockwise from P.
 Some special cases need to be handled. When
P, Q and R are co-linear, or nearly so, the circle
has a very large radius and the denominator in the
formula for Oy approaches zero. In this case, if R
lies outside the region between P and Q shown in
figure 3.11, the arc is approximated by a straight
line. If R lies inside that region, the arc is not
drawn.
 When Px = Qx alternative formulae to those
above must be used. Oy is calculated as ½(Py + Qy)
then Ox is calculated through a rearrangement of
the formula |P − O| = |R − O|.

OROQOP −=−=−

()() ()()()
()() ()()()

()
()xx

yxyxyyy
x

yyxxyyxx

yxyxxxyxyxxx
y

QP
QQPPOPQ

O

PRQPPQPR
RRPPQPQQPPPR

O

−

−−++−
=

−−+−−

−−+−+−−+−−
=

2
2

2
2222

22222222

POr −=

()() ()()xxyyyyxx QRQPQRQPi −−−−−=

P R

Q

r
O

Figure 3.10
An arc edge with primary

vertices P and Q, and
secondary vertex R

Figure 3.11 An arc with a very large radius
is approximated by a straight line between
P and Q if R lies outside the shaded region

P

Q

 18

3.3.4 Edge Intersection Detection
An edge that intersects another edge cannot form part of a
facet. The facet detection algorithm excludes edges whose
intersectTag field is set. The algorithm to detect intersections
and set the appropriate intersectTag fields is described below.
 A pairwise check of all edges was originally used to test
for intersection, but during testing with large patterns it
became clear that this was too slow. A new algorithm was
produced that creates an array containing references to all of
the edges. The result of the getBoundingBox method of each
edge is used to obtain two values, z1 and z2 (see figure 3.12).
These are the sums of the x and y components of the top-left
and bottom-right corners of the bounding box (coordinates are
measured from the top-left). The edges are sorted by their z1
values, then the algorithm proceeds as follows.

for each edge e1 in the array in order
 for every subsequent edge e2 whose z1 value is less than or equal to the z2 value of e1
 if the intersect tag of either e1 or e2 is not set
 if e1 intersects e2
 set the intersect tags of e1 and e2

 Conceptually the algorithm
advances a diagonal line from the
top left as in figure 3.13 (a), which
stops when it encounters the top-
left corner of a bounding box. It
then tests for intersection between
the edge whose bounding box it has
just found, and any un-tested edges
whose bounding boxes intersect the
diagonal region defined by the first
edge, which is shaded in figure 3.13
(b).
 The original algorithm always
used ½n2 pairwise edge
comparisons when testing n edges.
Assuming that the bounding boxes
are distributed in a regular grid the new algorithm will check each of the n edges against an average number

of other edges of the order of √n. This gives an average time
complexity of n1.5. The performance of the new algorithm
seen in practice is very much better
 Bounding boxes must be calculated for edges of each of
the four types (figure 3.14). The bounding box of a straight
line is simply defined by the end points of the line. The
bounding box of a Bézier curve is defined by the minimum
and maximum x and y values of the three or four control
points: it is a property of Bézier curves that they are
contained within the convex hull of those points. When
computing the bounding box of an arc, up to six points are
considered: the two end points, plus any of the four points at
the top, bottom, left and right of the circle that are within the
angular extents of the arc.
 When a pair of edges must be tested for intersection, the
intersectsEdge method of one is passed a reference to the
other. This method obtains a representation of the graphical

(x1,y1)

(x2,y2)

Figure 3.12
Two values are calculated from
the bounding box of an edge,
z1 = x1 + y1 and z2 = x2 + y2

Figure 3.13 Edges are processed in the order in which
their bounding boxes are encountered when scanning from
the top-left

(a) (b)

Figure 3.14 Bounding boxes for
the different edge types

 19

shape of each edge by calling it�s currentEdgeShape method. Recursion and subdivision are used to
determine whether the two shapes intersect.
 Subdivision of a straight line shape is simple. Subdivision of a quadratic or cubic Bézier is achieved
by applying the standard formulae. A quadratic Bézier with control points P0, P1, P2 is divided into two
quadratic Béziers with control points P0, ½(P0+P1), ¼(P0+2P1+P2) and ¼(P0+2P1+P2), ½(P1+P2), P2. A
cubic Bézier is subdivided in a similar way. An arc is subdivided by sharing it�s angular extent between
two arcs with the same centre and radius. The algorithm for deciding whether two shapes s1 and s2 intersect,
is as follows.

1 Intersect (s1 , s2)
2 if the bounding boxes of s1 and s2 do not intersect, return false
3 if either bounding box is thinner than the lead width of the edge
4 if the distance from the centre of the intersection of the bounding boxes to the end of the edge is
5 less than the lead width, return false
6 else return true
7 subdivide s1 into shapes s1a and s1b
8 if Intersect (s2, s1a) return true
9 if Intersect (s2, s1b) return true
10 return false

 The parameters are swapped for each
recursive call in lines 8 and 9, so the two shapes
get alternately subdivided. If the shapes do
intersect, the bounding boxes of the shape
segments will converge on the intersection point
(figure 3.15) until they are small enough to return
the value true. If two edges share a common
primary vertex, the point at which they meet is
excluded from being classed as an intersection by
the condition on lines 4 and 5.
 The intersects method of an edge determines
whether the edge intersects a specified rectangle in
pattern space, in much the same way as the edge
intersection algorithm above. When the user stops
moving a set of vertices or creating a new shape,
the affected vertices are incorporated into the rest
of the design. If a vertex intersects an edge, it is shifted to the nearest position on the edge by identifying
that point parametrically along the edge. The edge is then split into two, and the vertex becomes the
common point. Intersection of a vertex and an edge is detected by transforming the graphical representation
of the vertex on the screen, to a rectangle in pattern space, which is passed to the intersects method of the
edges in the pattern.

3.3.5 Splitting an Edge
Due to the system chosen for specifying edges, an edge of any type can be easily subdivided once a vertex
has been positioned at a point along it�s length. A new edge is made with the same attributes as the original
one, and then the primary and secondary vertices of the two edges are reassigned. The assignments that are
used are important because, for instance, a curved line comprised of cubic edges must retain it�s C1
continuity when one of the edges is subdivided by a vertex. Source code from the SGEdge class for
splitting a cubic edge is included in appendix C.
 Figure 3.16 on the next page shows how an edge of each type is subdivided by a new vertex N, into
two edges that use combinations of the original primary and secondary vertices. The vectors of primary and
secondary edges maintained by the vertices are updated accordingly.

Figure 3.15 The bounding boxes of the
shape segments converge on the
intersection point

 20

3.3.6 Edge Simplification
The kill method of a vertex is invoked when
the user deletes it, or the when the vertex�s
validate method determines it should be
killed. It is then tagged as redundant. The
validate method of an edge tests whether it
should be redundant, and kills it if necessary.
An edge, however, may require alteration
without being redundant, because one or
more of it�s secondary vertices is redundant
or is equal to one of it�s primary vertices.
 The algorithm for validating an edge is
shown on the right. The primary vertices of
the edge are v0 and v1. In an arc edge the
secondary vertex is v2. In a quadratic edge
the secondary vertex v2 is associated with the
v0 end of the edge. This is why v0 and v1
need to be swapped on line 14 of the
algorithm. In a cubic edge the secondary
vertices are v2 and v3 which are associated
with the v0 and v1 ends respectively.

1 if (redundant(v0) or redundant(v1))
2 then kill
3 if (v0=v1)
4 then kill
5 if (edgeType=quadratic)
6 then if (v2=v0 or v2=v1 or redundant(v2))
7 then edgeType ← straight
8 if (edgeType=cubic)
9 then if (v2=v0 or v2=v1 or redundant(v2))
10 then if (v3=v0 or v3=v1 or redundant(v3))
11 then edgeType ← straight
12 else edgeType ← quadratic
13 v2 ← v3
14 swap v0 and v1
15 else if (v3=v0 or v3=v1 or redundant(v3))
16 then edgeType ← quadratic
17 if (edgeType=arc)
18 then if (v2=v0 or v2=v1 or redundant(v2))
19 then edgeType ← straight

Original Edge Two Edges After Subdivision

P

N

Q

N

Cubic

RP

Q
N

Quadratic

R

Q
N

P

Q

R

N

Q

R

S

N

P

R

N

R

Q

N

P

Q

Straight

RP

Q

Quadratic

P

Q

R

S

Cubic

P

R

Q

Arc

Figure 3.16 Subdivision of an edge by a new vertex N, and the consequent primary and
secondary vertex reallocation

 21

 Vertices are equated using pointer equality since vertices at the same position will have �snapped�
together. The predicate redundant(vi) means that vertex vi has been tagged as redundant. The method kill
causes the edge itself to be tagged as redundant. The necessary modifications to the primary and secondary
edge lists of the vertices are not shown here. Edge simplifications can be summarised as follows: quadratic
and arc edges are simplified to straight lines, while cubic edges are simplified to quadratic edges if one
secondary vertex remains, or straight edges if none remains.

3.3.7 Tangent Vectors
The facet algorithms require the direction
of the tangent vector at each end of an
edge to be calculated. Due to the choice of
edge types this is easily achieved. The
method for straight edges is simple. For
quadratic and cubic edges the difference
between the two control points near the
end of the edge is used as a tangent vector.
As noted previously, a Bézier curve at the
end points has the same direction as the
line between the two control points
associated with that end. For arc edges the
vector can be computed using the
locations of the end points and the centre
of the circle, as shown in figure 3.17.

Figure 3.17 Tangent
vectors for the different
edge types

 22

3.4 Facet Representation

3.4.1 The SGFacet Class
The SGFacet class encapsulates the data and methods associated with a facet. These are listed in appendix
B.

3.4.2 Facet Detection
The algorithm for detecting facets was inspired, in part, by the Depth-first search and Graham Scan
algorithms [2]. Each edge in the pattern has two sides, and can be thought of as two directed edges. Each of
these edges can be part of the perimeter of a facet, where the facet is on the left side of the directed edge.
Each directed edge has a facet tag which is set to true when it becomes part of a facet. The algorithm
processes each of the directed edges in turn, excluding those whose facet tag has already been set. For each
one it follows the edge whose tangent angle at its start vertex is the closest clockwise to the tangent angle at
the end vertex of the current edge. If a loop of edges is created, a facet has been found. If the search cannot
go any further, or finds an edge that is already part of a facet, it fails. Failure also results from finding an
edge with it�s intersect tag set.
 Figure 3.18 shows how a simple facet could be detected. The directed edges numbered 1, 2, 3 and 4
form the perimeter of the facet, whose interior is on the left of each edge. The basic form of the algorithm is
shown below.

3.4.3 Concave Angle Detection

The markSharpAngles method of a facet finds �inward
corners� which would be hard to cut in glass. By
considering the angles of the tangent vectors of all adjacent
pairs of edges on the perimeter, it finds internal angles
greater than a threshold value. The vertex at an offending
corner is tagged using it�s setSharpFacetAngle method. A
tagged vertex, like the one in the middle of figure 3.19,
appears with a ring around it as a visual warning to the user.

1

2

3

4

Figure 3.18 Edge 2 is chosen to
follow edge 1 because it makes
the sharper clockwise angle

set the facet tags of all edges to false
for each edge e in the pattern
 for each side of e
 if the facet tag of this side of e is false
 create a new facet f
 vertex s ← the start vertex of e
 edge d ← e
 do
 add d to the perimeter of f
 d ← the sharpest edge from the end of d
 if d=null or the facet tag or intersect tag of d is set
 then finish checking this side of e
 while the end vertex of d is not equal to s
 add d to the perimeter of f
 set the facet tags of all the edges of f
 add f to the pattern

Figure 3.19 A facet containing an
inward corner

 23

3.5 Glass and Lead Data

Types of glass and lead are described by GlassType and LeadType objects which store the information
listed on page 8. An SGEdge object represents a piece of lead, whose type is identified by it�s leadCode
string. The data for different lead types is held in a file that is loaded when the Vitrigraph program is
started. The data is held in a hash table by the LeadData class, and is accessed when the attributes of a lead
type are needed, such as when an edge is drawn on the screen, printed, financially evaluated, or translated
to a part of a ray-tracer file. The LeadData class also produces a list of available types of lead ordered by
name, to offer to the user on the tool bar.
 Glass data is used in an analogous way by the GlassData class. Information about 14 types of glass
and 12 types of lead was taken from the catalogues of James Hetley Stained Glass Supplies. Extending the
system to use more types would simply be a matter of entering more information from the catalogues.

SGEdge

leadCode

LeadData

Data
file

hash table

LeadType
Name
Face Width
Heart Width
Depth
Price per Metre

Figure 3.20 Lead data for an edge
accessed through the LeadData class

 24

3.6 Pattern Evaluation

Financial evalution of stained glass patterns is used to calculate the cost of construction. It is intended that
extras like profit and VAT be added to this cost, as these are essentially arbitrary and may vary between
customers. Following an investigation of how stained glass pieces are priced, and what the important points
are, the evaluation system used by Vitrigraph was designed loosely, then refined by iterative development.
A set of test patterns of varying size, shape, style, complexity, and raw material type were assigned proper
costs, and used to verify the evaluation system at different stages.
 Constructing a stained glass window is a very labour-intensive task. Most of the cost � typically over
80% � is due to the complexity of the pattern, rather than the raw materials. Consequently the complexity
stage of pattern evaluation has received the most scrutiny and refinement.
 Calculation of raw material costs involves
determining how much of each type of lead and glass is
needed. All edges in the pattern have their length in
pattern space calculated, which requires adaptive
subdivision for quadratic and cubic edges (figure 3.21).
This is then converted to a length in metres and an off-cut
length is added to account for wastage. The lengths of
each lead type required are totalled and combined with the
data from the LeadData class to give costs for the
different lead types. A total cost for all of the lead can
then be obtained. The cost of the glass is calculated in
much the same way, except that a facet is assessed using
it�s rectangular bounding box, with an off-cut length
added to each dimension to account for wastage (figure
3.22). This is a valid approximation because a facet will
generally be cut from a rectangular piece, which itself is
cut from a larger rectangular sheet using straight cuts
along a ruler placed parallel to one of the sides.
 The algorithm to calculate a cost due to the
complexity of a pattern was originally designed to traverse
the data structure, building up the cost as it went.
Adapting this system and assessing the results was a slow
process, so a new approach was devised. The new system,
following the use of appropriate program constants, now
traverses the data structure of a pattern and produces an
alternative representation for evaluation purposes. This
can be saved as a file of comma-delimited data. All of the
test patterns were processed in this way, then loaded into
the Microsoft Excel spreadsheet package. An algorithm
for calculating the cost of a pattern from this data was written in Microsoft Visual Basic, an Excel

worksheet incorporating graphs was made to compare the
results from the different patterns, and an Excel macro was
created to update the graphs when the algorithm was
changed. This spreadsheet system was used to experiment
with many evaluation algorithm variants. An effective
evaluation algorithm was produced through this iterative
development system, which was then rewritten in Java and
incorporated into Vitrigraph. The test patterns and some
data used to assess the evaluation algorithm are shown in
appendix F.
 Figure 3.23 shows the options that are available to the
user when evaluating a pattern, with the default settings
which were obtained through testing in Excel. The graphs
and explanations on the following page describe the basic
principles behind the final pattern evaluation algorithm.

Figure 3.21 The length of a curved
edge is approximated using adaptive
subdivision

Figure 3.22 The bounding box of a
facet is increased to account for
wastage

Figure 3.23 Pattern evaluation options

 25

 Figure 3.24 (a) shows how the cost for the area of the pattern is related to the area, using the default
settings. It is effectively linear for large areas but is restricted to a minimum value. If c is the ‘Area Cost’
setting from the options shown in figure 3.23, m is the ‘Minimum Area Cost’ and a is the area of the
pattern, the formula for the graph is ca + me-0.5a. Figure 3.24 (b) shows how the cost of a facet is related to
the edge count (a weighted combination of the numbers of edges of different types), using the default
settings. If f is the ‘Basic Facet Cost’ (used to scale the graph) and n is the variable on the ‘Edge Count’
axis, the formula is f×(1+ln((n+3)/3)). The sum of the costs of the facets in a pattern is multiplied by each
of the functions shown in figures 3.24 (c) and (d), to effectively give a bulk discount to large patterns, and
reduce the price of very simple patterns. The ‘Number of Edges’ and ‘Number of Facets’ values are the
total numbers of edges and facets in the pattern data structure respectively.

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10 12 14

Edge Count

Fa
ce

t C
os

t

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3 3.5

Area in square metres

Pa
tte

rn
 A

re
a

C
os

t

0

0.2

0.4

0.6

0.8

1

0 250 500 750 1000 1250

Number of Edges

Fa
ct

or

0

0.2

0.4

0.6

0.8

1

0 75 150 225 300 375

Number of Facets

Fa
ct

or

Figure 3.24 The main functions used during financial evaluation of a pattern

(a) (b)

(c) (d)

 26

3.7 Files

Vitrigraph allows stained glass patterns to be saved to files and loaded from files. Java object serialisation
was chosen to implement this as described on page 8. All of the objects that form the pattern data structure
implement the Java interface Serializable, and have the methods writeObject and readObject. These
cause fundamental data, such as the position of a vertex, to be saved. Data that is not vital, such as the
edgeShape field of an edge, is not saved, but recreated when a pattern is loaded. To save a pattern, the
Editor obtains a file name from the user, then passes the corresponding SGPattern object to the
FileAccess class. Loading is achieved in an analogous way. Because the minimum amount of data is saved
in a way controlled by the individual objects of the pattern structure, it will be possible to add extra
functionality to those objects at a later date while maintaining compatibility with older files.
 To save a pattern, the FileAccess class saves a single object of a type called SGFileCurrentVersion.
This object has a constructor that takes an SGPattern object. It also has a getPattern method that returns
an SGPattern object compatible with the current version of Vitrigraph. Using this mechanism, different
versions of the program can create files which can be used by each other.

Figure 3.25 Loading and saving a pattern

Editor

SGPattern
File
on

Disk

FileAccess

SGFileCurrentVersion

Data

save
constructor

object
serialization

load

getPattern()

object de-
serialization

File format conversion
happens here

 27

3.8 Printing

A stained glass pattern created using Vitrigraph
must be printed before being constructed from lead
and glass. Ideally a life-size version that can be
fixed to a bench would be printed, on top of which
the stained glass window would be assembled.
Stained glass pieces, however, generally have areas
of one or two square metres, which would require
the type of large format printer not commonly
supplied with a standard computer system.
Vitrigraph therefore supports a number of standard
paper sizes from A4 and A3, up to 36� by 96�.
 The options provided to the user when printing
are shown in figure 3.26. ‘Scaled One Page
Pattern’ prints a scaled version of the pattern that
fits on one sheet of paper, for assessing the general
form of the pattern. ‘Life-size One Page Pattern’
prints the pattern at exactly the correct scale, so that
the stained glass window can be assembled on top.
‘Individual Facets, Numbered’ prints a scaled
one-page pattern, followed by outlines of all of the
facets from which the glass can be cut. The type of
glass to be used accompanies each facet. The facets in the scaled pattern and those on the individual sheets,
are labelled with matching numbers to allow the pattern to be pieced together. ‘Individual Facets, Not

Numbered’ simply omits the facet
numbering scheme. For example printouts
see appendix E.

When life-size facets or whole
patterns are printed, the shapes of the edges,
the lead face width and the lead heart width
are used to produce a representation from
which the glass can be cut accurately. An
example facet is shown in figure 3.27. The
thinner black line portrays the heart of the
lead. The glass must be cut to fit inside this
line. The thicker grey line portrays the face
of the lead. Defects in the edges of a glass
piece within this region are tolerable.

Figure 3.27 Hardcopy representation of a facet

Figure 3.26 Calculations involve the two
primary vertices and one secondary vertex

 28

3.9 Ray-tracer Translation

A program called POV-Ray (Persistence Of Vision) was chosen to create realistic images from Vitrigraph
patterns, because it is free, well known, and readily available for virtually all types of computer. The
features available in POV-Ray were reviewed by reading the extensive program documentation, trying
examples, and gaining information from the many related
web sites such as http://www.povray.org. The pattern is
translated into POV-Ray format which is then processed by
the ray-tracer to create an image that allows the aesthetic
appeal of the stained glass piece to be assessed.
 The only parts of the lead in a pattern that are seen in
any detail are the top and bottom surfaces. A piece of lead is
approximated by two cylinders (figure 3.28), with the face
width and depth taken from the lead type data. Arc edges are
approximated by multiple cylinders with constant angular
spacing. Quadratic and cubic edges are converted to many
cylinders through adaptive subdivision, using a threshold
which is a function of the lead width.
 A vertex is translated as two spheres with diameter and
centre-separation equal to the maximum face width and
depth of it�s primary edges. This ensures that the lead pieces
form smooth joints (figure 3.29).
 Facets are represented in the POV-Ray file as prisms
(figure 3.30). The prism vertices are obtained from the shape
of the edges on the perimeter using subdivision as for the
lead segments. Lower accuracy is used because the width of
the lead masks small errors in the shape of the facet.
 The POV-Ray objects described above are standard
ray-tracing constructs and consequently can be rendered
quite quickly. Originally the lead was represented using the
POV-Ray �blob� construct which defines an implicit surface
(an iso-surface of a scalar field). This can provide a more
realistic profile of the lead and smooth joins at all of the
vertices, but greatly increases the processing time for a
complex pattern, and does not strongly enhance the overall
appearance of the rendered image.
 When choosing how to render a
stained glass pattern with the ray-tracer,
there are a plethora of possibities. A set
of options has been chosen to allow
functional and aesthetic representations
to be generated. The window presented
to the user is shown in figure 3.31 and
the options are explained in the table on
the right.

Real Lead POV-Ray Lead

Figure 3.29 Lead sections
converging at a vertex

Figure 3.30 POV-Ray glass facet

Figure 3.28 Shapes of the
lead cross-sections

Figure 3.31 Ray-tracer
translation options

Style �Bench� produces a pattern over a flat
surface, viewed from directly above to
get an idea of the precise layout. �Sun
Beam� uses the POV-Ray �media� effect
and a spotlight to create an aesthetically
pleasing picture. See appendix H for
examples of both styles.

Background Selects a black or grey background, or a
plane with a colour map that resembles a
stone surface.

Lead �Dark� and �Grey� finishes give the lead
blackened and untreated appearances
respectively. A �Light� finish makes the
lead structure more visible.

Glass The �Slightly Bumpy� and �Very Bumpy�
options apply a bump map to the surface
of the glass facets, causing it to appear
bumpy like textured or antique glass.

 29

4 Evaluation

This section lists some of the tests that were used on Vitrigraph to verify the correct operation of the
program. The message system in the vitrigaph.debug.Debug class was used extensively to report on the
operations. Recommendations resulting from the user trials are listed, followed by an explanation of how
the finished program fulfills the original requirements. Finally, future enhancements to the program are
suggested.

4.1 Program Testing

All components of the program were tested explicitly. All bugs found were fixed. Some of the more elusive
ones were due to errors in the Java 1.2 implementation from Sun. The program was moved from the beta
version of the development kit to the full version when it became available, but this still contained many
errors. One example of such an error is the routine to calculate the bounding rectangle for an arc, which
returns a patently incorrect result. This and other problems were overcome by exposing the bug and
selecting an alternative implementation strategy.

Pattern Editing
All of the operations through which graphical manipulation of stained glass patterns is achieved, were
tested by using them with large and small collections of edges of different types, orientation and lead
settings.

• Examples of the four edge types were created, manipulated and used to
produce a variety of patterns.

• Intersections of vertices with edges of each type were tested by dragging

vertices onto edges in many different arrangements.

• Examples of the 16 combinations of pairwise edge intersections were formed
and tested with the edges in various orientations. Possibly problematic
configurations were used such as the intersection of two orthogonal axis-
aligned straight edges.

• Facets were formed from combinations of edge types, then filled with different

glass types and manipulated by moving their constituent edges and vertices.

• Several full patterns were created to test, in particular, the performance of the
system when the number of interacting components in the pattern is large.

• All of the above tests were performed with the debugging graphics turned on.

These are activiated by setting constants in the vitrigraph.debug.Debug class,
and cause additional information to be displayed about primary and secondary
edge counts of vertices, tangent vectors of edges, bounding boxes of facets, and
other properties of the components of a pattern. This extra information allows
any anomalies in attributes that are usually hidden to be quickly recognised.

• Debugging messages were also turned on, which provide a textual stream of

details about the current state of the pattern and the operations of the various
methods invoked when it is altered. This output has not been included as an
appendix because it is verbose and voluminous.

The operations described here are illustrated with screen shots in appendix D.

 30

Files
The patterns used to test the program were saved and loaded, with bug fixes being completed inbetween.
The system for handling files was verified as working correctly.

Printing
A large format printer was not available during testing, so patterns of different sizes were printed to
postscript files which were inspected to ensure that all of the components were present and represented
correctly. Different printing sizes were used, from A4 to 36�×96�. A4 printouts were produced on paper of
patterns containing facets of known size and lead width. The printed versions of the facets were measured
to ensure they had exactly the correct dimensions. Example printouts have been included as appendix E.

Pattern Evaluation
Experimentation with different methods for financially evaluating patterns was conducted as described on
page 24. A set of test patterns was used, which were given accurate costs in advance. The patterns and
details of their financial evaluations are shown in appendix F. Other patterns were used which were
formulated to be unusual in some way, such as one with no facets or edges, to test the behaviour of the
evaluation algorithm. Giving costs to stained glass windows is a subjective procedure, and depends on the
experience of the person who is going to construct them. All of the patterns in the test set have a relative
error of less than 0.1 in their evaluations, apart from pattern B which has a high cost because large round
windows of this type are difficult to assemble to exactly the correct size and shape. Capturing these kinds
of notions in a general purpose evaluation algorithm is difficult. The Vitrigraph financial evaluation system
is intended to be a guide to pricing, rather than an exact measure.

Ray-tracing
All of the test patterns plus others have been translated to ray-tracer format. All of the translation options
have been used and subjected to aesthetic evaluation. Inspection of the POV-Ray script files was used to
ensure that they not only produce a faithful and eye-catching interpretation of the pattern, but also that the
file is structured such that it is amenable to perusal and modification by a suitably experienced human user.
Plain text comments and tabulation, for example, are used to make the file easier for a person to read.
Appendix G is an example of a simple pattern translated into a POV-Ray file. Appendix H shows the ray-
traced version of a more complex pattern. Certain constants in the vitrigraph.debug.Debug class were
used during testing to activate the inclusion of additional objects in the POV-Ray file, to convey useful
information such as the direction of the axes.
 Lead in the ray-traced representation of a pattern was originally given a surface finish using specular
reflection, plus other definitions from one of the standard �metal� finishes supplied with POV-Ray. Most of
the intricacy of the ray-traced components is in the lead, yet the appearance of the lead is much less
important than that of the glass. The original finish was therefore replaced with one incorporating only
ambient and diffuse reflection, with no appreciable loss in image quality. The change made patterns faster
to render because of the decrease in the number of light rays processed by the ray-tracer. The POV-Ray file
in appendix G using the new lead finish took 3 minutes 53 seconds to render at 640×640 pixels with anti-
aliasing on a Pentium 300MHz machine. Using the old finish it took 5 minutes 34 seconds.

 31

4.2 User Trials

Two people were used to test Vitrigraph from the perspective of a user with basic computer skills. They
were given access to the program documentation (appendix I) and were then asked to create a moderately
complex pattern, save and load it, print it, use the financial evaluation system on it, translate it to a ray-
tracer file and view the rendered result. With a minimal amount of practice the users were able to perform
all of these tasks competantly. In general the graphical user interface and graphical method for
manipulating parts of a pattern quickly became familiar. A number of issues were discovered and are listed
below under the broad categories of those that would be relatively easy to ammend/implement, and those
that would require more fundmental changes to the program.

Minor Changes

• An extra tool would be useful that allows a new vertex to be created at any
point on a line. A new vertex could be created at the position of a mouse click,
then snapped to an edge which it would then split by the same mechanism used
for snapping existing vertices to edges, as described on the bottom of page 19.

• The way the shape of an arc relates to it�s three vertices could be made more

intuitive, by using the current position of the mouse (transformed into pattern
space) to draw the arc before the third vertex has been created. This would
allow the user to receive feedback on how the proposed position for the new
vertex will affect the arc.

• The manipulation of the pattern would be aided by the ability to drag edges (as

well as vertices) with the mouse. This could be implemented by detecting an
intersection between the mouse pointer and an edge, then moving the vertices
associated with that edge.

• A tool would be useful that pulls the end of an edge away from a vertex shared

by more than one edge. This could be achieved by replacing the primary vertex
of one of the edges by a copy of the common vertex.

Major Changes

• A more flexible editing system would be effected by separating the snapping of
vertices to edges, from the splitting of edges. Vertices could be attached to
edges without splitting them in two (see bottom of page 33).

 32

4.3 Achievement Criteria

The requirements of the project are listed below. Each is accompanied by an explanation of how it has been
satisfied.

! The user must be able to create a stained glass pattern using simple

constructs that are combined graphically. Manipulation of patterns is simple
and straightforward. Optimisations have ensured the interactive user interface
remains responsive even for large, complex patterns. All of the editing features
work properly as described on page 29.

! The graphical representation of the pattern should relate directly to the

intended physical design, and incorporate information such as the type of
each piece of lead and glass. This is clearly the case. The Java routines used to
create the printouts are also used to draw the pattern on the screen, so what you see
is what you get.

! It must be possible to load and save designs from and to files. This facility has

been tested as described on page 30.

! It must be possible to produce printouts of the whole pattern or parts of it,

from which the stained glass window can be constructed. This facility has been
tested as described on page 30. It provides an accurate method for cutting the glass
facets. A stained glass window is usually assembled on top of a life-size pattern.
Producing this type of printout from Vitrigraph requires a large-format printer for
a stained glass window of a reasonable size. Prices for this type of printer in 1999
are around £3000 to £6000 � within the range of a company selling a modest
number of stained glass windows.

! Financial evaluation routines should compute the cost of producing the

window. The routines should give an accurate costing for patterns of varying
size and complexity. The evaluation routines give quite accurate cost analyses for
the test patterns (page 30). These can be used as a guide to pricing, but the price of
a stained glass window should ultimately be set by an expert. This is because there
are so many factors that may affect the difficulty of constructing a particular
pattern: particular types of glass may be harder to cut than others, certain window
shapes will be more susceptible than others to slight errors in the cuts, and the
craftsman will be more effective at constructing a pattern in a style with which he
is familiar.

! The program must be able to present the pattern in a form that makes it easy

to visualise the finished product. Aesthetic evaluation must be possible. The
ray-tracer translation system allows patterns to be assessed aesthetically by people
with no experience in stained glass or computing. This is clear from the example
ray-tracer output in appendix H.

 33

4.4 Future Enhancements

A number of possible enhancements to the Vitrigraph program have been identified:

• The additional methods for editing patterns listed in the user trials section (page 31)
would increase the ease with which patterns can be created. Other useful additions
include rulers to provide continual information about lengths and positions, and the
ability to scale a selected part of the pattern. Due to the way facets are comprised of
edges, and edges interpolate vertices and are invariant under various transformations
(page 10), the scaling could be achieved by simply transforming the locations of the
vertices.

• An algorithm to arrange for more than one facet to be printed on each sheet of paper

would be useful. This would save paper, especially when using an A3 printer which
probably will not be large enough to print the whole pattern on one sheet, but which will
waste paper if one sheet is used for each facet.

• Entry, expert costing and analysis of large numbers of patterns would be a lengthly

process, but would be necessary if a more accurate evaluation system was needed. More
data from the pattern such as the internal angles of each facet, could be used in a more
complex algorithm. Experimentation with new algorithms would be simple given the
current prototyping system in Visual Basic.

• Two extensions were specified in the proposal for this project: ray-tracer output has

been fully implemented, while the use of glass textures has been left as a future
enhancement. If bitmap pictures of all of the types of glass could be obtained, from the
supplier or through the use of a digital camera, they could be processed by one of the
commonly available programs that produce �tile� images for the backgrounds of web
pages. The bitmaps would be stored with the LeadType objects, and the Java2D API
could fill the facets on the screen with the appropriate textures. POV-Ray supports the
use of such textures, so more realistic ray-traced images could also be created. In
addition, a variety of bump maps could be created so the bumpy surface of different
types of glass could be reproduced by the ray-tracer.

• The ease with which patterns are manipulated could be increased by allowing the

position of a vertex to be specified either as an absolute location in pattern space, as is
currently the case, or as a parametric position relative to another edge. This would
require the data structure for an edge to support an unbounded number of sections, each
of which could be part of up to two facets. A pattern would then be comprised of
vertices, edges, edge sections and facets. The data structures and associated algorithms
for most of the program would consequently be more complex.

Figure 4.1
�Spectrum Green
Blue Opal� glass
from the James
Hetley web site

 35

5 Conclusions

A system has been contrived that can represent a wide variety of stained glass patterns and an efficient
implementation has been created. The source code for the program consists of approximately ten thousand
lines of code contained in 51 Java class definition files.
 If more work was to be done on the program, the most substantial improvement would be gained by
adding the ability to specify vertex locations relative to edges as discussed on page 33. This would form a
more general and expressive structure for creating patterns. It was left out because it was a fundamental
decision and it was not known how difficult the basic system would be to implement. With hindsight it
seems this was the right decision: it would have made many parts of the program significantly more
complex.
 Vitrigraph is a working program that can be used to design and evaluate stained glass windows, and
aid with physical construction. It offers a more pragmatic approach to their production than other programs
available for a similar purpose. If more time was available, many small additions could be made to the user
interface, which would help to give the computer-supported design method the same flexibility as a pencil
and paper while employing the many advantages of a digital medium.

 37

Bibliography

[1] Baugmart B. G., �A polyhedron representation for computer vision� in vol 44 of AFIPS National

Computer Conference Proceedings, pp589-596, 1975.

[2] Cormen T. H. Leiserson C. E. and Rivest R. L., Introduction to Algorithms, MIT Press, 1996.

[3] Flanagan D., Java in a Nutshell 2nd ed., O'Reilly, 1997.

[4] Foley J. van Dam A. Feiner S. Hughes J., Computer Graphics: Principles and Practice 2nd ed.,

Addison Wesley, 1997.

[5] Frohbieter-Mueller J., Practical Stained Glass Craft, David & Charles, 1984.

[6] Murray J. D. and vanRyper W., Encyclopaedia of Graphics File Formats 2nd ed., O'Reilly &

Associates, 1996.

[7] Pressman R.S., Software Engineering, McGraw-Hill, 1996.

[8] Rade L. and Westergren B., Beta Mathematics Handbook 2nd ed., Chartwell-Bratt, 1992.

 39

Appendix A – Program Structure

Listed below are the six Java packages into which the source code for the program was arranged (see page
8). The main object classes from the diagram on page 7 are listed, together with brief explanations.

main

Shell Initialises global variables and loading of glass and lead data, launches rest of the program.
VGGlobal Stores global constants and variables: version information, filenames, colours, numeric

constants. May be used by any part of the program.
gui

MainWindow The main program window with which the user interacts. Receives GUI events, which it may
pass to other objects. Page 13

InfoWindow Displays windows to alert the user or prompt for confirmation.
pattern

SGForger Stores a stained glass pattern. Allows edges and points to be added, selected, moved and deleted.
Maintains an internal state of the pattern.

SGPattern Stores the core data of the pattern that is passed to the translator, evaluator, file access routines
and print routines.

SGVertex A vertex. Page 15
SGEdge An edge. Page 16
SGFacet A facet. Page 22

LeadData Loads, saves and manipulates data about all available types of lead.
LeadType Data about a particular type of lead.
GlassData Loads, saves and manipulates data about all available types of glass.
GlassType Data about a particular type of glass.

tool
Editor Receives user events from the MainWindow object and acts upon them to edit the stained glass

pattern.
Evaluator Implements a number of evaluation algorithms that calculate the cost of the pattern. Provides a

user interface to alter settings and outputs the results. Page 24
Translator Implements translation of the pattern into a file suitable from rendering by a ray-tracer. Provides

a user interface to alter settings that affect the translation. Page 28
io

FileAccess Handles all loading and saving of data for different file format versions. Provides a user
interface to select file names, types and locations if necessary. Page 26

Print Prints individual facets, or the whole pattern. Provides a user interface to select printer settings
and output styles. Page 27

debug
Debug Provides a uniform method for creating debugging messages of varying priorities. Provides a

method to screen out messages below a certain priority, or to switch them off altogether for the
final version of the program. Always displays a message to the user following a critical program
error. May be used by any part of the program.

 40

Appendix B – Pattern Representation Classes

This appendix lists the data fields and main externally visible methods of the SGVertex, SGEdge and
SGFacet classes. A group of instances of these three classes can jointly represent a stained glass pattern.
An SGPattern object contains vectors of such instances, to represent a pattern in a single object.

SGVertex Class

Data in the SGVertex class:

pos Two-dimensional position of this vertex in pattern space
primaryEdges Vector of edges for which this is a primary vertex

secondaryEdges Vector of edges for which this is a secondary vertex
redundant Tag to indicate this vertex has been classified redundant

sharpAngleTag Tag to indicate this vertex forms an internal reflex angle in a facet

Main externally visible methods of the SGVertex class:

SGVertex The constructor. Creates a vertex object, given it�s location in pattern space
addPrimaryEdge

removePrimaryEdge
primaryEdge Manage the primary edges of this vertex

addSecondaryEdge
removeSecondaryEdge

secondaryEdge

Manage the secondary edges of this vertex

draw Draws this vertex
getPos

getX
getY

setPos

 Return or set this vertex�s position in pattern space

in Determines whether this vertex is inside a specified rectangle in pattern space
getSharpFacetAngle
setSharpFacetAngle Reads and sets the sharpAngleTag field

kill Makes this vertex redundant and validates all of it�s primary and secondary edges
isRedundant Returns true if this vertex has been classified redundant (killed)

killRedundantEdges Kills any duplicate primary or secondary edges
replaceWith Replaces this vertex throughout the pattern with a different vertex

translate Translates this vertex in pattern space
squareDistanceFrom Calculates the square distance of this vertex from a point in pattern space

validate Causes this vertex to decide whether it is still needed, and kill itself if it is not.
closestEdgeTangent Returns the primary edge of this vertex that has the tangent angle that is closest

clockwise to a specified angle.

SGEdge Class

Data in the SGEdge class:

v Vector storing references to the 2,3 or 4 vertices that define the edge
edgeType Takes one of a number of integer constants that denote the type of this edge
leadCode String used to identify the type of lead of which this edge is made

facet A two-element array holding references to the facets on either side of this edge
redundant Tag to indicate that this edge has been killed

edgeShape Caches the graphical representation of the edge
imageValid Boolean value that indicates whether edgeShape is now valid

intersectTag Tag to indicate if the edge intersects another edge in the pattern
facetTag Tag for each side of the edge, used in the facet finding algorithm. Page 22

 41

Main externally visible methods of the SGEdge class:
SGEdge The constructor. Creates an edge object given 2,3 or 4 vertices, and a lead type

getVertex Returns one of the primary vertices specified by an index
replaceVertex Occurances of a specified vertex in v are replaced with a different vertex

associateWithFacet
deassociateWithFacet

getFacetAssociation

Manage the facet vector

setFacetTag
clearFacetTags

getFacetTag

Manage the facetTag settings

currentEdgeShape Returns an object that defines the graphical representation of this edge
draw Draws this edge

Hardcopy1
Hardcopy2

 Draws this edge when creating a print out

equals Tests for equality between this edge and another
getBoundingBox Returns the rectangular bounding box for this edge in pattern space
setIntersectTag
getIntersectTag

 Set and get the intersectTag field

getLeadCode Returns the leadCode string
getLength Calculates the pattern space length of this edge for financial evaluation. Page 24

getSharpestEdge Returns the sharpest edge following this one. Used for facet detection. Page 22
getTangentAngle Returns the tangent angle at one end of the edge

intersects Calculates whether this edge intersects a specified rectangle
intersectsEdge Determines whether this edge intersects another edge

invalidateImage Called by a vertex to invalidate the edgeShape that is cached to speed up drawing
validate Validates the edge, possibly performing edge simplifications or killing it. Page 20

kill Marks the edge as redundant and validates it�s vertices
isRedundant Returns true if this edge has been killed

subdivide Subdivides the edge into two, given a vertex to form the common point

SGFacetClass

Data in the SGFacet class:

edges A vector storing the edges that form the facet perimeter
glassCode Used to identify the type of glass of which this facet is made

facetShape Caches the graphical representation of the facet
imageValid Boolean value that indicates whether facetShape is now valid
redundant Tag to indicate that this facet has been killed

Main externally visible methods of the SGFacet class:

SGFacet The constructor. Creates a facet object given a glass code
addEdge

removeEdge
replaceEdge

containsEdge
getEdges

Manage the vector of edges

draw Draws this facet
drawHardcopy Draws this facet when creating a printout

getBoundingRectangle Returns the rectangular bounding box for this facet in pattern space
getGlassCode Returns the glassCode string

kill Marks this facet as redundant
isRedundant Returns true if this facet has been killed

markSharpAngles Sets the sharpAngleTag field of the vertices that form reflex internal angles. Page 22
invalidateImage Called by an edge to invalidate the facetShape that is cached to speed up drawing

setGlassCode
getGlassCode

 Set and get the glassCode string

validate Validates the facet, possibly killing it

 42

Appendix C – Example Code

The source code in this appendix is that for a method of the SGEdge class that splits the edge with a vertex. If the edge is a cubic edge this method is
called, and passed the vertex as the parameter p. Extra comments have been inserted into the code to explain it more thoroughly than the Java comments.

/**
 * Subdivides this cubic edge, creating a new cubic edge.
 */
private SGEdge subdivideCubicEdge(SGVertex p)
{

The relevant points in pattern space are referenced by the following SGVertex and SGPoint variables.
 final SGVertex
 f = v[0], // The vertices that define this edge
 g = v[1],
 h = v[2],
 i = v[3];
 final SGPoint // Control points of the bezier
 b = controlPointPos(g.getPos(),f.getPos(),h.getPos()),
 c = controlPointPos(f.getPos(),g.getPos(),i.getPos());

The x and y coordinates of the relevant points are put into final values to speed up computation.
 final float
 ax = f.getX(), // The coords of the three points that define the
 ay = f.getY(), // cubic bezier
 bx = (float)b.getX(),
 by = (float)b.getY(),
 cx = (float)c.getX(),
 cy = (float)c.getY(),
 dx = g.getX(),
 dy = g.getY(),
 px = p.getX(), // The coords of the point that's going to divide the bezier
 py = p.getY();

The values of t0 and t1 will start at 0 and 1 (the two ends of the cubic Bézier curve) and move towards each other until they converge on a point close to
the vertex that will split the edge.
 float
 t0 = 0, // Two values of t that home in on the required value
 t1 = 1;

 // Iteratively home in on the value of t that defines the
 // point on the bezier closest to p

 for(;;)
 {

The standard formula for cubic Bézier is used to calculate two points (x0,y0) and (x1,y1) on the curve.
 // Calculate square distance of p from first point on Bezier
 final float
 s1 = 1-t0,
 tt0 = t0 * t0,
 x0 = s1*(s1*(s1*ax + 3*t0*bx) + 3*tt0*cx) + tt0*t0*dx,
 y0 = s1*(s1*(s1*ay + 3*t0*by) + 3*tt0*cy) + tt0*t0*dy,
 dist0 = (x0-px)*(x0-px) + (y0-py)*(y0-py);

 // Calculate square distance of p from second point on Bezier
 final float
 s2 = 1-t1,
 tt1 = t1 * t1,
 x1 = s2*(s2*(s2*ax + 3*t1*bx) + 3*tt1*cx) + tt1*t1*dx,
 y1 = s2*(s2*(s2*ay + 3*t1*by) + 3*tt1*cy) + tt1*t1*dy,
 dist1 = (x1-px)*(x1-px) + (y1-py)*(y1-py);

The point on the curve which is farthest from the vertex, moves closer.
 if (dist0<dist1) t1 = (t0+t1)/2;
 else t0 = (t0+t1)/2;

When a threshold is reached, the point is deemed close enough. The vertex is �snapped� to the position on the curve.
 if (t1-t0 < 0.0005f)
 { p.setPos(x0,y0);
 break;
 }
 }

The vertices of this edge are changed, and the primary and secondary edge vectors of the vertices are updated.
 this.replaceVertex(f,p);
 this.replaceVertex(h,f);
 f.removePrimaryEdge(this);
 f.addSecondaryEdge(this);
 h.removeSecondaryEdge(this);
 p.addPrimaryEdge(this);

 f.inPrimaryEdgesReplaceSecondaryVertex(g,p);
 i.inPrimaryEdgesReplaceSecondaryVertex(f,p);

A new edge using some of the original vertices of this edge, plus the vertex p, is created and returned from the method to be included in the pattern data
structure. A redundancy check by vertex p ensures that any edges that are now duplicates of other edges are deleted.
 SGEdge newEdge = new SGEdge(f,p,h,g,leadCode);
 p.killRedundantEdges();
 return newEdge;
}

 43

Appendix D – Screen Shots

This appendix contains screen shots of the graphical user interface of Vitrigraph. Pictures demonstrating
the use of the tools for creating and altering stained glass patterns are included.

Results of the line,
curve, arc and circle
tools

Rubberbanding to
select vertices

Dragging a vertex to
a new position

 44

Left: The facet is
filled with amber
glass.
Right: The edge
intersection means
that no facet is
created.

A reflex internal angle
in the upper facet
causes a vertex to he
highlighted.

Debugging graphics

Counts of primary
and secondary edges

Tangent angles

Facet bounding
boxes with edge
counts

Curve fitting
guidelines

 45

Appendix E - Printouts

The next two pages are examples of the printouts produced by Vitrigraph. They have both been generated
from pattern A in appendix F. The first page contains a scaled, numbered version of the whole pattern. The
second contains one of the facets. The black and grey lines show the heart and face widths of the lead. The
facet is the correct size: 150mm from left to right and 200mm from top to bottom.

 46

PRINTOUT 1

 47

PRINTOUT 2

 48

Appendix F – Financial Evaluation Testing

The stained glass patterns used to test the financial evaluation algorithms are shown below.

Pattern Width (m) Height (m) Facets Edges Vertices

A 0.3 0.3 8 24 17
B 0.9 0.9 11 55 45
C 0.6 1.2 28 70 43
D 1.0 1.4 340 1114 775
E 1.0 1.0 100 220 121
F 1.5 1.5 5 28 24
G 1.0 1.6 41 101 61

The table below contains the expert and Vitrigraph-generated costs for the test patterns, taken from the
spreadsheet used to experiment with financial evaluation algorithms. The graphs show that the Vitrigraph
evaluations are quite close to the proper costs, and would give a useful guideline when pricing a pattern.

Pattern Expert Vitrigraph Error
A 40.00 38.70 0.03
B 170.00 141.43 0.17
C 150.00 135.03 0.10
D 550.00 565.81 0.03
E 200.00 203.03 0.02
F 150.00 160.95 0.07
G 280.00 300.61 0.07

Pattern Cost

0

100

200

300

400

500

600

A B C D E F G

Proper
Vitrigraph

Absolute Relative Error

0.0
0.1

0.2
0.3
0.4
0.5

0.6
0.7
0.8

0.9
1.0

A B C D E F G

A E

F

GC D

B

 49

// Created by Vitrigraph

//The stone slab background
plane {
 <0,-1,0>, -100
 texture {
 pigment {
 bozo
 turbulence 0.25
 color_map {
 [0 color rgb <0.9, 0.9, 0.9>]
 [1 color rgb <0.6, 0.6, 0.6>]
 }
 scale 2
 }
 finish{ ambient 0.4 }
 }
 }

//The camera looks at the centre of the window
camera {
 location <417.000000,-15.599987,417.000000>
 look_at <417.000000,0.000000,417.000000>
 up <0.000000,0.000000,-1.000000>
 right <1.000000,0.000000,0.000000>
}

//A light to the top right of the viewer
light_source {
 <419.399951,-15.599987,419.399951>
 fade_distance 15.599987
}

//A light behind the centre of the window
light_source {
 <417.000000, 60, 417.000000>
 color rgb 1
 fade_distance 0.529166
}

//The appearance of the lead
#declare Lead_Texture =
texture {
 pigment { color rgb 0.35 }
 finish {
 metallic
 ambient 0.2
 diffuse 0.85
 roughness 0.05
 brilliance 2.0
 }
 }

//The following cylinders represent the lead in the pattern
cylinder {
 <411.000000,-0.250000,411.000000>,
 <411.000000,-0.250000,423.000000>, 0.500000
 open
 texture { Lead_Texture }
}
cylinder {
 <411.000000,0.250000,411.000000>,
 <411.000000,0.250000,423.000000>, 0.500000
 open
 texture { Lead_Texture }
}
cylinder {
 <416.999951,-0.250000,423.000000>,
 <423.000000,-0.250000,423.000000>, 0.500000
 open
 texture { Lead_Texture }
}
cylinder {
 <416.999951,0.250000,423.000000>,
 <423.000000,0.250000,423.000000>, 0.500000
 open
 texture { Lead_Texture }
}
cylinder {
 <423.000000,-0.250000,423.000000>,
 <423.000000,-0.250000,411.000000>, 0.500000
 open
 texture { Lead_Texture }
}
cylinder {
 <423.000000,0.250000,423.000000>,
 <423.000000,0.250000,411.000000>, 0.500000
 open
 texture { Lead_Texture }
}
cylinder {
 <416.999951,-0.250000,411.000000>,
 <411.000000,-0.250000,411.000000>, 0.500000
 open
 texture { Lead_Texture }
}
cylinder {
 <416.999951,0.250000,411.000000>,
 <411.000000,0.250000,411.000000>, 0.500000
 open
 texture { Lead_Texture }
}
cylinder {
 <411.000000,-0.250000,423.000000>,
 <416.999951,-0.250000,423.000000>, 0.500000
 open
 texture { Lead_Texture }
}

cylinder {
 <411.000000,0.250000,423.000000>,
 <416.999951,0.250000,423.000000>, 0.500000
 open
 texture { Lead_Texture }
}
cylinder {
 <423.000000,-0.250000,411.000000>,
 <416.999951,-0.250000,411.000000>, 0.500000
 open
 texture { Lead_Texture }
}
cylinder {
 <423.000000,0.250000,411.000000>,
 <416.999951,0.250000,411.000000>, 0.500000
 open
 texture { Lead_Texture }
}
cylinder {
 <416.999951,-0.250000,411.000000>,
 <416.999951,-0.250000,423.000000>, 0.299999
 open
 texture { Lead_Texture }
}
cylinder {
 <416.999951,0.250000,411.000000>,
 <416.999951,0.250000,423.000000>, 0.299999
 open
 texture { Lead_Texture }
}

//The following spheres represent the vertices in the pattern
sphere {
 <411.000000,-0.250000,411.000000>
 0.500000
 texture { Lead_Texture }
}
sphere {
 <411.000000,0.250000,411.000000>
 0.500000
 texture { Lead_Texture }
}
sphere {
 <411.000000,-0.250000,423.000000>
 0.500000
 texture { Lead_Texture }
}
sphere {
 <411.000000,0.250000,423.000000>
 0.500000
 texture { Lead_Texture }
}
sphere {
 <423.000000,-0.250000,423.000000>
 0.500000
 texture { Lead_Texture }
}
sphere {
 <423.000000,0.250000,423.000000>
 0.500000
 texture { Lead_Texture }
}
sphere {
 <423.000000,-0.250000,411.000000>
 0.500000
 texture { Lead_Texture }
}
sphere {
 <423.000000,0.250000,411.000000>
 0.500000
 texture { Lead_Texture }
}
sphere {
 <416.999951,-0.250000,423.000000>
 0.500000
 texture { Lead_Texture }
}
sphere {
 <416.999951,0.250000,423.000000>
 0.500000
 texture { Lead_Texture }
}
sphere {
 <416.999951,-0.250000,411.000000>
 0.500000
 texture { Lead_Texture }
}
sphere {
 <416.999951,0.250000,411.000000>
 0.500000
 texture { Lead_Texture }
}

//The definition of the glass finish
#declare Glass_Finish=
finish {
 specular 1
 roughness 0.001
 ambient 0
 diffuse 0
 reflection 0.1
 refraction 1
 ior 1.5
}

//The following prisms represent the glass facets
prism {
 linear_sweep
 linear_spline
 -0.200000, 0.200000
 5
 <416.999951,423.000000>,
 <416.999951,411.000000>,
 <423.000000,411.000000>,
 <423.000000,423.000000>,
 <416.999951,423.000000>
 texture {
 normal { bumps 0.3 }
 pigment { rgbf<1.000000,0.000000,0.000000, 0.94> }
 finish { Glass_Finish }
 }
}
prism {
 linear_sweep
 linear_spline
 -0.200000, 0.200000
 5
 <416.999951,411.000000>,
 <416.999951,423.000000>,
 <411.000000,423.000000>,
 <411.000000,411.000000>,
 <416.999951,411.000000>
 texture {
 normal { bumps 0.3 }
 pigment { rgbf<0.000000,0.000000,0.900000, 0.94> }
 finish { Glass_Finish }
 }
}

Stone slab
background

Camera

Light sources

Surface finish
of the lead

Edges

Vertices

Surface and
internal
appearance of
the glass

Facets

Appendix G – Ray-tracer Output
The file shown in this
appendix was created by
Vitrigraph then used by
POV-Ray to generate
the ray-traced image on
the left. This simple
example demonstrates
how the parts of the
stained glass window
are represented using
POV-Ray components.

Edges

 50

Appendix H – Rendered Pattern

These demonstrations of the
�sunbeam� (right) and �bench�
(bottom) options for ray-tracer files
were rendered from test pattern D
in appendix F. The images would
be shown to a customer to convey
the aesthetic qualities of the pattern,
before commencing construction.

 51

Appendix I – Program Documentation

Vitrigraph
Stained Glass Window Designer

Contents
Getting Started
Creating Designs
Translating to POV-Ray
Evaluating the Cost of a Design
Printing

Getting Started
Vitrigraph is a program for designing stained glass windows.
It requires Java 1.2. If you do not already have a copy of Java
1.2 installed, it is available for Windows, Unix and Linux
from http://java.sun.com/
The program is executed by starting the
vitrigraph.main.Shell class using the Java implementation
suitable for your hardware and operating system.

Creating Designs
The main program screen looks like this:

The menus have these functions:
File Allows designs to be loaded and saved, and new designs

created. Also initiates printing.
Edit Allows parts of designs to be cut, copied, pasted and

deleted.
Tool Selects one of the six drawing tools on the tool bar.

Translates the design to a POV-Ray file.
Evaluates the design to obtain a price based on raw
materials and complexity.

Zoom Sets the zoom level used to display the design.
At 100% zoom the design is shown approximately life-
size.

Grid Turns the grid off, displays the grid, and sets snap-to-grid
on. When snap-to-grid is on, vertices that are moved snap
to the nearest grid position when they are released.
The 'Choose Grid Size' option allows the separation of the
grid dots to be entered in millimetres.

The stained glass design is created by drawing lengths of lead
using the tools described below. The lengths of lead are
drawn between points called vertices. The design is modified
by moving, deleting and creating vertices. Areas between the
lengths of lead can be filled with glass.

The tool bar:

The six buttons on the left of the tool bar select the tools that
can be used to draw the stained glass window design. They
are:

Pointer Vertices can be selected individually, or by dragging a

box around a group of vertices.
Vertices can be dragged around.

Line A straight line is drawn by clicking on the start and
end points of the line.

Curve A curved line is drawn by clicking on two or more
points that are on the line.

Circle Three points are created, through which the circle
passes.

Arc Three points are created. The first two are the start
and end points of the arc.
The third one is another point on the arc.

Fill Fills an area surrounded in lead, with glass.

The lead selector, allows the current type of lead to be
chosen, which is subsequently used to form lines drawn with
the line, curve, circle and arc tools. The glass selector allows
the current type of glass to be chosen, which is subsequently
used to fill glass pieces with the fill tool.

The four buttons on the right of the toolbar are:

Centre Moves the scrollbars on the window so that the

middle of the design is in the middle of the
window.

Show Vertices Hides or shows the vertices between which the
lead lengths are drawn.

Show Lead
Width

Selects whether the lead is drawn with its true
width, as it will look in the finished stained glass
window, or drawn as thin black lines that show
the shape of the lead segments, but not the width.

Show Glass Selects whether the glass pieces are displayed or
not.

Lead Intersections
When a lead piece appears blue instead of black,
this indicates that it crosses over another lead
piece. The piece should be moved to avoid this
before glass pieces are added.

Inward Angles
When a vertex appears with a circle drawn around
it, this indicates that the vertex lies on the outside
of a glass piece, and the glass piece contains a
sharp inward angle. The glass piece would
therefore be very hard to cut. A design that
contains such a vertex can still be created and
printed - the ring around the vertex is just a
warning.

 52

Translating to POV-Ray
The Translate option in the Tool menu allows a stained glass
design to be represented as a POV-Ray file. This allows a
realistic ray-traced picture of the stained glass window to be
generated, before the window is actually built for real. A
picture of a ray-traced design is shown below:

When a design has been created for someone, and approval is
required before moving on to actually making the window,
the designer can select the Translate option. This displays a
number of options for the POV-Ray file:

Style Bench The stained glass piece is displayed,

lying flat, with the viewer looking
down onto it.

 Sunbeam The stained glass piece is viewed from
an angle, with light shining through
from behind.

Background None No background is used. The space

behind the piece is black.
 Grey

Plane
The space behind the design is
coloured grey.

 Stone
Slab

A dappled-grey stone slab is used as a
background.

Lead Dark The lead is dark, like traditional

blackened lead.
 Grey The lead is grey, like unblackened

lead.
 Light The lead is bright, like aluminium

Glass Flat The glass is totally flat.
 Slightly

Bumpy The surface of the glass is wavy.

 Very
Bumpy

The surface of the glass is bumpy, like
textured glass.

When the options have been chosen, a file name is given to
the translated file, and it is saved. For use with POV-Ray,
files are often given a '.pov' extension. The file can be loaded
into POV-Ray and rendered at the desired detail level. Note:
the 'sunbeam' option produces a nice effect but will be much
slower to render that the 'bench' option.

POV-Ray is a free program, and can be obtained from
http://www.povray.org/

Once the POV-Ray file has been produced by Vitrigraph, it
can be edited to add many varied effects. Information about
how to use the POV-Ray scripting language is included with
the program, and their are many web sites for enthusiasts.

Evaluating the Cost of a Design
Once a design has been drawn, it can be evaluated
financially. The Evaluate option is chosen from the Tool
menu.

Vitrigraph calculates:

• The length of each type of lead needed, plus a
small amount of wastage for each piece. The total
cost of the lead is calculated.

• The area of each type of glass needed, including a
small addition to the width and height of each
piece due to wastage.

• The number of glass pieces, and their complexity.
This and the basic facet cost are used to get a cost
for the complexity of the fabrication of the design.

• The area of the design. This is used in a formula
to calculate the cost of producing the design,
independent of complexity.

From the above amounts, the total cost of fabricating the
design can be calculated. Extra amounts such as profit and
VAT for a stained glass window that is being made for sale
to a customer are intended to added onto the cost calculated
by the Vitrigraph evaluation.

Before evaluation begins, variables that affect the
calculations can be altered. An explanation of the purpose of
each variable, plus it's default value, is given below.

Lead Excess The length added to each lead piece to account

for wastage.
Default = 15mm

Glass Excess The length added to the width and height of

each glass piece.
Default = 10mm

Basic Facet
Cost

An amount that determines how much is added
to the cost of the design by having many facets,
and facets that are complex and therefore
hard to cut.
Default = £1.30

Area Cost The basic cost per square metre for any design.

Default = £30

Minimum Area
Cost

The minimum cost for the stained glass
window, even if everything else is free.
Default = £16

 53

Printing
The Print option in the File menu prints the design to paper.
Before a design is printed, the print options window is first
displayed. The 'Paper Size' option allows one of a number of
standard paper sizes to be chosen. The 'Paper Margins' option
allows the blank area around the outside of the paper to be
reduced if extra space is needed for large glass pieces.

Four printing modes are available:

Scaled One Page
Pattern

The whole pattern is printed. It is scaled
to fit on one sheet of paper.

Life-size One Page
Pattern

The whole pattern is printed life-size.
The paper must be big enough to
accommodate the whole design. Black
and grey parts of the lead show the heart
and face of the lead respectively.

Individual Facets,
Numbered

The first page contains a scaled, one-page
pattern. Subsequent pages each contain
one glass piece. Black and grey parts of
the lead show the heart and face of the
lead respectively. Each glass piece is
accompanied by a number that
corresponds to it's position in the one
page pattern, and the type of glass with
which the piece has been filled.

Individual Facets, Not
Numbered

As above, except the glass pieces are not
numbered.

When the print options have been selected, a window appears
where the printer should be selected. Clicking on 'Ok' then
prints the design.

The printouts of individual facets look like this:

The glass type of the facet above is Grey Cathedral, and the
number of the facet is 20, corresponding to the same number
which will be on the one page scaled printout. The black line
outlining the glass piece, is the heart of the lead. The glass
piece should be cut so that it is inside the black outline. The
grey line is the total width of the lead. Defects such as chips
in the glass will not be noticed if they fall within this area. A
life-size one-page pattern is intended to be fixed to a bench
so that the glass can be cut, and stained glass window
assembled, on top of the print out.

